Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions.

نویسندگان

  • Joakim Huber
  • Anja Vales
  • Goran Mitulovic
  • Michael Blumer
  • Rainer Schmid
  • Joseph L Witztum
  • Bernd R Binder
  • Norbert Leitinger
چکیده

Membrane vesicles (MVs) released from activated cells and blebs from apoptotic cells are increased in patients with vascular disease and in those with atherosclerotic lesions, and their contribution to inflammatory reactions has been suggested. At sites of inflammation, MVs could serve as rapidly available substrates for peroxidation, carry oxidized compounds to activate other cells, and amplify inflammation. Here, we show that MVs released from tert-butyl hydroperoxide-treated endothelial cells (ECs) and apoptotic blebs, but not MVs from Ca(2+) ionophore-treated ECs, stimulate monocyte adhesion to ECs, an important step in atherogenesis. We show that oxidized phospholipids, such as the previously identified 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC), are responsible for biological activity in MVs and apoptotic blebs. Natural antibodies from apolipoprotein E-null mice that recognize POVPC also recognize oxidized MVs, and pretreatment of MVs with these antibodies inhibits their ability to activate ECs. Furthermore, the biological activity of oxidized MVs is inhibited by platelet-activating factor receptor antagonists, which have been shown to inhibit the action of POVPC. Taken together, we show that oxidized MVs and apoptotic blebs stimulate ECs to specifically bind monocytes, with oxidized phospholipids (POVPC) being the active principle. In addition to oxidized lipoproteins, oxidized MVs and apoptotic blebs may play an important role in chronic inflammatory diseases, such as atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptotic Cells with Oxidation-specific Epitopes Are Immunogenic and Proinflammatory

Oxidation of low density lipoprotein (LDL) generates a variety of oxidatively modified lipids and lipid-protein adducts that are immunogenic and proinflammatory, which in turn contribute to atherogenesis. Cells undergoing apoptosis also display oxidized moieties on their surface membranes, as determined by binding of oxidation-specific monoclonal antibodies. In the present paper, we demonstrate...

متن کامل

Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo.

Entry of monocytes into the vessel wall is an important event in atherogenesis. Previous studies from our laboratory suggest that oxidized arachidonic acid-containing phospholipids present in mildly oxidized low density lipoproteins (MM-LDL) can activate endothelial cells to bind monocytes. In this study, biologically active oxidized arachidonic acid-containing phospholipids were produced by au...

متن کامل

Protective Effect of High Density Lipoprotein Associated Paraoxonase

Introduction Our group has previously demonstrated that oxidized phospholipids in mildly oxidized LDL (MM-LDL) produced by oxidation with lipoxygenase, iron, or cocultures of artery wall cells increase monocyte-endothelial interactions and this sequence of events is blocked by HDL. To obtain further insight into the mechanism by which HDL abolishes the activity of MM-LDL we investigated the eff...

متن کامل

Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids.

Secretory nonpancreatic phospholipase A2 (group II sPLA2) is induced in inflammation and present in atherosclerotic lesions. In an accompanying publication we demonstrate that transgenic mice expressing group II sPLA2 developed severe atherosclerosis. The current study was undertaken to determine whether 1 mechanism by which group II sPLA2 might contribute to the progression of inflammation and...

متن کامل

Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase.

Oxidized phospholipids stimulate endothelial cells to bind monocytes, but not neutrophils, an initiating event in atherogenesis. Here, we investigate intracellular signaling events induced by oxidized phospholipids in human umbilical vein endothelial cells (HUVECs) that lead to specific monocyte adhesion. In a static adhesion assay, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2002